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A method of solving the flow problem for a nonlinear ultraviscous liquid in a 
screw channel in the Stokes approximation is outlined, together with the 
results. 

Formulation of the Problem 

Although the mathematical modeling and calculation of the flow of rheologically com- 
plex media in the screw channels of extrusion machines has been considered in many studies 
[1-3], the description of the rheological behavior of real materials in these studies has 
been based on models of nonlinearly viscous liquids with modeling in inverse-problem form 
(rotation of the casing), taking no accountof the features of the motion at points where 
the screw rib and casing are in contact. 

It was shown in [4] that, regardless of the form of its cross section, a screw chan- 
nel with spiral boundary surfaces has a single-parameter symmetry group: shears with 
respect to spiral lines. Consequently, the desired velocity field V may be assumed to be 
independent of the coordinate along the axis of the spiral channel. By analogy with [5], 
spiral coordinates related to the cylindrical coordinates as follows are introduced in the 
flow region 

2~ X 1 = r, X z : ~ - - - - ~ Z ,  X a ~ Z. 
(1) 

A continuous and steady flow process is assumed. To describe the ultraviscous proper- 
ties of the materials, in this case, it is convenient to use a rheological equation of state 
of differential type [6, 7]; this equation presumes slow flows, distinguishing it favorably 
from integral and relaxational equations. The total-stress tensor at the moment of observa- 
tion is expressed by a nonlinear symmetric tensor functional specified in a set of tensor 
functions determining the previous history of deformation [7] 

=--P1  + F(B,, B2, Ba). ( 2 )  

Taylor series expansion of F in the vicinity of the point t = 0 with respect to the 
White-Metzner kinematic tensor leads to significant simplification of Eq. (2), since dis- 
carding terms of the kinematic tensor components which contain transverse components of 
the velocity vector beyond the first means that attention may be confined to the first three 
terms of the expansion 

= - -  P1 + % (l~) B~ + % (I~) B~ + % (12) B, ,  ( 3 )  

where 
B~=2D; B2 = B ~ - -  B~G �9 - - G B r  D = I (G + G" ). 

Using the classification of [6, 7], Eq. (3) is for determining some special liquid of 
complexity 2. One corollary of the well-known [6] theorems of Nell and Van says that an 
arbitrary simple incompressible liquid is indistinguishable in viscosimetric flows from a 
liquid of complexity 2, and its equation of state reduces to Eq. (3). Thus, extrusional 
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flow will be regarded as quasi-viscosimetric flow (a subclass of spiral flow), and correspond- 
ingly the dependence of the material functions in Eq. (3) on Ia may be neglected. 

It is also assumed that the inertial and gravitational forces are negligibly small; 
the heat transfer along the basic direction of motion on account of heat conduction is small 
in comparison with the induced heat transfer; and the thermophysical characteristics of 
the liquid are practically constant in the extrusion process. 

Thus, the system of equations of motion and continuity in the coordinates in Eq. (i) 
takes the form 

OP 1 0 
OX t X t OX ~ 

OP 
Ox 2 

OP 

Ox ~ j (x~) 3 

a (xlV~) + o -~  ( : w )  = o 
Ox ~ 

0 
- - - - T 2 2 ,  (4) 

(5) 

(6) 

(7) 

with the boundary condition 

Vl~ =a. 

The components of the stress deviator for the given problem are 

(8) 

[ o (vjt  
�9 ~, = 2 ~  ( 4 ) ~  + ~ (&) A --0~ -A ' 

�9 ~ = ~,  = ~ (4) l a :  + (x~)~ ~ ~ ) + 

+ k (xl) z ax-- ~ ~, A / 

a 1 = % (I2) 

'172D2 = 2q31 (12) [ (%1)2 av~ 
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+ k ~ l )  ~ OV3 + x~V1] + 
ax z . . . . .  :." 

(or.)~ 
- zk% (&) i-~:/ ' 

= ~, ~ + 2k~'V') + ~ (4) Ak (~'), ~ 7  J 

~ O x l j  
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{ [ a (v~)]2 a aV3,.2~ 
�9 ~a = 2~  (I~) kax~V ~ + q)~ (12) A s - ~  - ~  + ~ - ~ x Z )  z { + 

1 
The argument of the material functions ~ is 

12 l t r B ~ = 2 [  OV~ ~+-- =2 A (owl  
' (xl# ~, ax~ ] 
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@ /t(xi)il 0 /P"-' i2 (OV 2"2 [ 0 (~)]  2 1 /0V3"t2 

4k Va OVa 4 V 1 0 V  2 4kix 1V2 OV a 4k=(xa) 3 
+ Axx Ox~ + Ax~ Ox~ + A Ox 2 + ~ x 

ax 1 , q- A Ox' -A  q- 2 \--s q- 4 . 

§ 

To describe the behavior of ~l(l=), a particular case of the Kutateladze-Khabakhpasheva 
rheological model is used 

where 

~* = exp,(-- ~*). 

0 (~ T0) 
," ~0 = 1 /% (12); �9 = (Pl (I2) ] / ~ .  

qD= - - %  

The behavior of ~2(I 2) and ~3(12) is approximated by power laws 

% (12) = ~ I~ ", % (I2) = - -  ~ I~ ". 

C o m p o n e n t - b y - c o m p o n e n t  a n a l y s i s  o f  Eqs.  ( 4 ) - ( 6 )  i n d i c a t e s  t h a t  8P/Sx 3 = c = c o n s t ,  
which offers the possibility of establishing a relation between 8P/Sx 3 and the volume flow 
rate 

OP 

Ox a Q .t .i ~1 (12) , Ox --'-~1 ~, A A , A A , 2i- 

I A Ol/,+ikV, 0 ,V3 k(xa)Wi), 
+ (xa) - - - T  Ox - - z  x----YJ Ox ~ \ A A ] dO... (9) 

Realization of the Problem 

Iterative methods are used to find a solution of Eqs. (4)-(7) with the boundary condi- 
tion in Eq. (8). Before Calculating the hydrodynamic characteristics, 8P/3x 3 is calculated 
by means of Eq. (9); the first-approximation formula given by Eq. (9) for the Newtonian 
case is employed initially. The Galerkin method is used to solve the problem. The general- 
ized solution V (x z, x 2) of Eqs. (4)-(7) must satisfy the integral relation [8] 

,, '  [ % (l~) B~ 0/):D (h) -t- % (12)B~ (I~):D (h) + 
i! [ 

OP h3 ] = ,r ,, B~ (~):D ~) + - -  dO 0 

for an arbitrary element h of the space J'2(E) of solenoidal vector functions with the condi- 
tion hlF = O. The sequence of basis functions ~(z), ..., ~(k) is used to find the general- 

ized s o l u t i o n  i n  s p a c e  J ' 2 ( a ) .  

The approximate solution is sought in the form 

17 k -- "~, ck~ (h) + a  (10) 
h = l  

from the Galerkin system 

j l J [ %  (Is) B~ (l~):B~ (~(h)) _ % (I~) B~ (IV~):B~ ~(k)) _ 

0. 
c) x 3 ] 

(11) 

1 0 8 8  



V~ v~ 

~ / ~  
2 ~"  A - : - . 4 y / ~ " ~  

0 ~2s ~50 ~TS a-aT_ 0 g2s gso ~7~ r 7 
a2 -~1 R2-R1 

Fig. i. Theoretical dimensionless profiles of azimuthal flow-velocity 
component of elastoviscous liquid in extruder screw channel: I) ~ = 
0.5 sec-1; 2) 0.63; 3) 0.83; 4) 0.91 sec-1; a) annular cross section 
r = (R I + R2)/2; b) radial cross section A-A. 

In choosing ~-(k), the solenoidal condition div ~(k) = 0 must be satisfied. 

The components of the velocity vector are sought in the form 

V 1 = Bkz (h')hz - -  a ' ,  V 2 : Bh~ (h2)~z - -  a 2, 

~=0 I=0 h=0 I=0 
c d 

V3 = , ~ X  "~" ~ Ahz (h3)kz -- as.  
k=0 1=0 

Series expansions of the current function and the covariant component of the velocity 
vector V 3 are used as the basis functions; the solenoidal condition is satisfied identically 

here. 

At the contact points between the casing and the rotating-screw rib, discontinuity 
of the flow velocity components is seen. To make the problem continuous, the intermediate 
value x I - R* is introduced, such that R 2 - R* is sufficiently small. This means that the 
discontinuity at contour points for the specific solenoidal vector a, the value of which is 
determined by the angular velocity of screw rotation m, may be replaced by continuous bound- 
ary conditions. Consequently, in spiral coordinates, Eq. (8) may be replaced by the fol- 
lowing conditions 

a )  X 2 ~- 0~1, R < X  1 < [  R *  H X 2 - -  Cc2, R1 < X I <  R * ,  

a z = O, a 2 = r a 3 : kco(xZ)2; 

b) X 2 =~I, R* <X I< R2 H X 2 = CC2, R*<xI<R 2, 

a ~ = 0 ,  a 2 = ~ c o s  T. ----*' ' ~R~--R*/ J 
, R ~ - - R ,  J 

c) x 1 = R  1, ~z~ < x Z  < o~2, a 1 = 0 ,  a 2 : o ,  a~=ko~(x')2; 

d)  R t =  R2,  o~1 < x  2 <o~2,  a 1 = 0, a z : 0,  a3 : 0. 

As is readily confirmed, the cosine approximation maintains the condition that the vector 
is solenoidal and continuous, as well as its first and second derivatives. In addition, 
the error of the approximation decreases sharply with increase in m. 

Equation (ii) is expressed as a system of algebraic equations that are nonlinear with 
respect to the dimensionless coefficients of the expansion 
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Fig. 2. 

a 

~  ' 

D,1 

-0,1 ~v..... ,, 0 

-o,s o 

b 

i 

o, e5 o,5o o,75 . r -"JR 7 
R2-R 7 

Theoretical dimensionless profiles of radial velocity component; 
notation as in Fig. i. 

c d a b 

~__~ ~ AhlAiiI(AAhliJccl -~- ,~ ~--a BhlBiJKBBhli&d -~- 
l,h~O ] , l = O  i,h=O / ,b=O 

+ N" "~r "%; AhtBiJKA htiicd-c ~' AhlKA hind "t- 

c b 

~ ~ BhzK~kzcd + Kcd -= O, 
h=0 i = 0  

e = O ,  1 . . . . .  Co, d-----O, 1 . . . . .  do; 

d b 

~.~ AhlAijLAAhli3ab-Jr- ~ ~.~ BhlBi'LBBhl~]ab-i- 
i,h-----O 1,/=0 i,h~O ],l=O 

222 2 + z_~ AhzBhzLABhUJab + ~ Ah~LA gzab + 
h=O I=0 i=0 ]=0 h=O I=0 

a b 

q - ~  N~ Bk~L~kl~b-t-L~b = O, a = O, ao, b O, bo. 
h=O t = 0  

(12) 

(13) 

As already noted, iterative procedures are used to solve Eqs. (12) and (13). As well 
as iteration with respect to 8P/Sx 3, the algorithm includes procedures for the material 
functions ~ Repeated Gaussian quadrature with eight points is used in calculating the 
integrals K~z and L~l with values of ~i frozen in the iterations. The Gaussian method 
is used to find the coefficients Akz and B~z �9 The standard method of division into halves 
is used to calculate %(12). 

Basic Results 

In the numerical investigations, the case of flow in the screw channel of a machine 
extruding grade-E polyethylene terephthalate (lavsan) isconsidered; the rheological charac- 
teristics of the extruder are determined using a PIRSP-03 rheological instrument. The dimen- 
sions of the screw channel are: R 2 = 0.063 m, R I = 0.058 m, S = 0.063 m; the angular velo- 
city of screw rotation m = 0.5 sec -I. 

The results of calculating the components of the velocity vector for radial and annular 
screw-channel cross sections in cylindrical coordinates are shown in Figs. 1-3. 

As is evident from Fig. ib, the azimuthal component of the velocity vector in the radial 
screw-channel cross section varies from a minimum value r = RI to r = R2; this variation 
is nonlinear. In the annular cross section (Fig. la), the variation in V~ is slight. Esti- 
mating the influence of the velocity of screw rotation (the productivity), it is evident 
that increase in m (curve 3) is accompanied by increase in the azimuthal velocity component 
and sharper deformation over the channel cross section. 
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Fig. 3. 
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Theoretical dimensionless profiles of axial velocity component; 
notation as in Fig. i. 

The radial component of the velocity vector in the annular cross section (Fig. 2a) 
has a section with negative values in the outer-casing region. Note that, regardless of 
the angular velocity m, the point of inflection of the curve V r is the same for the speci- 
fied ratio of geometric parameters of the channel. In the radial cross section (Fig. 2b), 
there is no zone of negative V r. 

Dimensionless curves of the axial velocity component V z are shown in Fig. 3 for analog- 
ous cross sections of the screw channel. In the annular cross section (Fig. 3a), the curves 
of V z are asymmetric and have clearly expressed concavity at one rib of the screw. In the 
radial cross section (Fig. 2b), the profile of V z has concavity on both sides. With increase 
in m, V z increases. It is evident that the region of inverse flow (sections of the curves 
with negative V r and V z) lie on the rear side of the screw rib with respect to the direc- 
tion of rotation. 

To estimate the influence of the rheological characteristics of the material on the 
hydrodynamic flow pattern, calculations are undertaken for particular cases of the model 
in Eq. (3): a Newtonian fluid (~2 = ~3 = O, @ = 0); a pseudoplastic fluid (~2 = ~3 = 
O, @ > 0); and a Reiner-Rivlin (RR) fluid (~3 = O) with pseudoplastic properties ~@ > 0). 

As shown by the calculations, increase in the region of inverse flow and decrease in 
the radial component V r is seen on passing from the simplest case (a Newtonian liquid) to 
a more complex rheological model (RR fluid). The difference between the curves of the 
velocity components for an RR liquid and for a liquid with Eq. (3) is less pronounced: no 
more than 10-12%. This discrepancy is evidently due to the assumption of quasi-viscosimetric 
flow and the failure to take account of the dependence of (p~ on 13. Introducing a more 
complex rheological model sharply increases the number of iterations and reduces the ac- 
curacy of the calculations, entailing an increase in the number of terms in the expansion 
of the flow velocity components. 

NOTATION 

v, velocity vector; x I, x 2, x 3, spiral coordinate system; r, % z, cylindrical coordin- 
ate system; S, spacing of spiral line; ~, stress tensor; P, pressure; BI, B 2, B a, kinematic 
White-~etzner tensors; F, tensor functional; ~, ~2, ~3, material functions; 12, 13, second and 
third deformation-rate invariants; D, deformation-rate tensor; G, gradient tensor of velo- 
city v; G T, transposed tensor G; T ~ deviator of tensor T; k = 2~/S; A = 1 + k2x'2; V i, 
V 2, first and second contravariant components of vector v: V3, third covariant component 
of v: Q, volume flow rate; ~, region in channel cross section; F, boundary of ~; a , solen- 
oidal vector; ~, angular velocity of screw rotation; ~* and T*, current values of % and 
T; 90 and To, values of % and ~as 12 + O; ~, values of ~, as I~ ~ ~; @ , structual- 
stability coefficient of liquid; n 2 and na, exponents; ~, viscosity; R 2 and R l, large and 
small radii of coaxial spiral channel; Vr, Vz, components of v in cylindrical coordinate 
system; V, mean velocity over channel cross section; ~, ~, limiting values of x2; ~, cur- 
rent value of x 2. 
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DEGREE OF CRYSTALLINE STRUCTURE OF POLYMER OBTAINED FROM MELT AT 

VARIOUS COOLING RATES 

A. Ya. Malkin, S. A. Bolgov, V. P. Begishev, 
and O. S. Mazalov 

UDC 66.065.51:541.64 

An analytical dependence of the final degree of crystalline structure on the 
rate of temperature variation is obtained for polymer material. It is shown 
that the formula obtained ensures satisfactory agreement with experiment in 
a broad range of cooling rates. 

In the real technological production of components from polymers which are crystallized 
from a melt, the crystallization always occurs in nonisothermal conditions, as a result of 
heat transfer with the surrounding medium and the low thermal conductivity in the bulk of 
the material. At the same time, it is well known that the structure of polymer (and other) 
materials and hence a whole set of their physical and mechanical properties depend on the 
cooling rate. In addition, even the degree of crystalline structure of the finished com- 
ponent depends on the cooling rate. 

In nonisothermal polymer crystallization, specific kinetic phenomena arise as a result 
of the very nonlinear temperature dependence of the crystallization rate, on the one hand, 
and the relation between the heat loss to the surrounding medium and the heat input due 
to the existence of an internal heat source (the heat of crystallization), on the other. 

The aim of the present work is to establish the relation between the cooling rate of 
the polymer material obtained from the melt and the final degree of crystal structure attained 
at the temperature at which crystallization no longer occurs. In fact, the temperature 
dependence of the crystallization rate takes the form in Fig. la. It is evident that & = 
0 when T < T d and the final degree of crystal structure ~= attained at T < T c depends on 
the rate of crossing the region from T m to T c. In addition, it must be taken into account 
that, at any temperature in the range from T m to Tc, the equilibrium degree of crystal 
structure ~e depends on the temperature, as shown schematically in Fig. ib, but ~e < i al- 
ways. 
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